
1

Just a bit about me. I’m a “Network Systems Administrator” at The University of the
Arts in Philadelphia, I’ve been there since December 2015.

I am jmahlman on the various platforms. I have a twitter but it’s a personal account
and I don’t really share that out too often.

And my little blog/website is there, yearfothegeek.net. I don’t post often but it’s
basically where I go to put my processes up for future reference and hopefully to help
people out. I actually decided to do this presentation because I wrote a post about
this process and started to get questions from people so I figured presenting on it
would be good!

C This presentation can also be downloaded at the following link.

2

As mentioned, I work for The University of the Arts in Philadelphia. Here are some
stats at a glance.

C We have around 1800 students _C_ spread across 6 buildings in the heart of
downtown Philadelphia. We’re a majority Mac campus, only a handful of windows
machines…so

C We have over 200 lab machines in a little over 20 labs, 40 smart-classrooms
which are single systems hooked up to projectors and sound and a few other student
facing systems such as studios and production suites.

C We also manage office systems, faculty and staff laptops which are university
provided, and finally student BYOD systems. We only supply software to students via
self service, we don’t do much else with those.

C We have a lot of variation in systems…2009-2017 models are in use with
operating systems from 10.9 to 10.13.

C We’ve had on-prem jamf pro since 2012 _C_ with over 1700 systems at any time

3

in there.

For the purpose of this presentation we’re going to focus only on _C_ faculty and staff
laptops.

3

So, let’s go back in time a little bit… _C_

4

Not too long ago..the imaging process looked like this…

C You can send out this command or something like it to a bunch of machines using
ARD or jamf remote or a policy and your machine would boot to a netboot set that
was on a server

C then your imaging application (jamf imaging) would take over.

5

Sit back and have a beer. And walk in the next day or whatever and your machines
would be imaged.

We did this a lot actually, during summer maintenance we would scope a bunch of
labs with our netboot policy, have autorun set and we didn’t have to babysit
anything. It also worked well for the faculty laptops…

6

Imaging would load the configuration based on the machine record or pre-stage, or
our helpdesk manually chose one and it just worked.

And things were good.

7

And then…it happened. _C_ High Sierra….

8

Apple gave us this wonderful update.

But I mean, just because it’s not recommended doesn’t mean it wouldn’t work..or..

9

AH, yeah…10.13.14 gave us UAKEL.

10

And then UAMDM.

These essentially killed any automated imaging..so the question that’s been asked for
months now _C_

11

Is imaging actually dead?

Let’s check google. _C_. Wow, that’s a lot of stuff..let’s click some of them.

Or buddy Armin Briegel _C_ Oh, yeah.. Okay, how about Jamf Nation _C_

Yeah..posts about people basically learning how to deploy again. _C_

12

So yeah, it’s dead , Jim_C_

Mostly. Because let’s be honest, it still works, but that may not last for long.. _C_

13

14

Well, we looked at a bunch of options.

Our first option was to just stay on 10.12. <READ LIST> This would be fine for us in
the short term but not in the long term at all. _C_

Our next option was to do an in-place upgrade. Apple gives us the tools, right? Let’s
use them…so the pros and cons again. <READ LIST> This one was looking good for us
but we still didn’t like those cons at all. _C_

Option 3 was sort of a hybrid solution and I’ll be honest with you, this is the process
we’re using as a very quick stop-gap for our labs. Because again, imaging STILL works
on 10.13..but we would run into the same issues again plus the UAMDM and UAKEL
issues, unless you image to 10.13.3 then upgrade..but for a long term solution, that
won’t work.

15

16

Let’s look at the tools we have.

We have Apple School manager _C_ which is just DEP for schools.

And we have jamf pro _C_ which works with DEP

Okay, great, now how to we put these together and make is simple and a nice user
experience? Well..there are apps for that! And we took a look at two of them. _C_

17

The first one was SplashBuddy and the other was the new kid _C_ DEPNotify.

Splashbuddy was very enticing _C_ Looking at the pros and cons <READ LIST>

C And now DEPnotify. <READ LIST> Now, that last one was pretty important to us,
we wanted user input so we can name machines and add asset information..so we
were really going to go for splash buddy. _C_

And then came Frederico Deis (FGD on slack). He posted in the depnotify channel
that he was looking for people to test his forked build that offered user input! So I
downloaded, tested it and figured out how to use it and it worked really well! _C_ So
taking that “con” away..I had my decision.

18

So here was the simplified process we had in place basically.

Get new machines and prep them with the base OS with either DEP for a new
machine or internet recovery for a reused one. Boot machines to setup and install
the software that was needed and when the machine was going to be assigned we
would rename it and enter asset information then give it to the user. Of course, a
cold beverage at the end.

19

Let’s take a look at the preparation.

20

New machines would get assigned in our server via Apple School Manager (DEP).
Make sure prestage is configured then assign the machine to the correct pre-stage
setup.

Note _C_ the checkbox for “require authentication” is unchecked. This is because we
want our techs to setup the machine and if you require authentication, that machine
gets assigned to that user and we didn’t want that.

21

The next setting was to create our local admin account, macadmin. That is an
account that we have on all machines just in case the user forgets their password or
some other reason.

Note _C_ that we skip account creation. We do this again so the machine isn’t
completely locked to a user until we’re ready.

22

Since this presentation really focuses on our faculty and staff machines, we typically
wouldn’t do an automated or remote install, but I figured that it’s important to know
about them.

For machines already in the jamf server we can utilize the start os install binary from
the High Sierra installer with a policy. There are some useful flags available to us,
these are two that we like using if we can.

23

First you push out the installer app then run a script that will take care of the install
process for us with start os install.

C Note the $4 flag, we can use that for additional flags such as erase install or
convert to apfs.

This is nice because if you have machines that are APFS compatible, you can make a
self service policy for your techs to wipe the drive and re-install a clean OS! The
example above is just using a custom trigger.

24

For machines that are either not in the jamf server or you cannot use the “erase
install” command you should just boot to internet recovery with good ol’ command
R.

C which of course brings up the utilities and you can go from there.

25

So lets go back to our steps…we just prepped our machines and next we should
deploy.

26

So deployment is simply booting the machine to get the mobile config and install the
software we need based on the machine type. But what if you don’t know who is
getting the machine? How are you going to figure out what software gets installed?

We don’t assign the machine until the next step..
C

27

Well, maybe we can do both at the same time… _C_

28

So, after we prepare a machine, that machine can either go into storage until it’s
ready to be deployed (which happens often for us) or it can be deployed and assigned
right away.

This will also lower the amount of steps needed to deploy the machine, then assign
it, then rename the machine and add the user account, etc. We can take care of
everything at one time.

29

So here is our enrollment complete process!

Install DEPNotify with extra payload items then run a script.

Sounds great, right?

30

It wasn’t…we ran into issues.

C First we found it was running behind the login window. Things would work, but
nothing would show up which was obviously bad.

C So we added a ”wait for dock loop”. This worked about 60% of the time because
the next issue was

C It started running before the user was completely logged in. _C_ So we added a
timer.

C This too didn’t run every time, we would have edge cases where it would again
run but it be in the background or what if we had a tech close the laptop..then you
would have the script waiting to run in the background.

So we decided to solve that with _C_ a launch daemon!

31

So let’s go back and look at _C_ this step.

We’re still installing DEP with a payload but we’re going to add the deployment script
and launch daemon.

32

So here is our package.

C Here is the app in /var/tmp

C Our logo
C And our provisioning script

That script gets called by _C_ our launch daemon.

33

This is our launch daemon here. Pretty straight forward, it loads _C_ the provisioning
script 10 seconds after login is complete.

It will also run if the enrollment trigger occurs while the user is logged in, we have
this issue quite often.

34

Now that we have that there, we have to load it and that is what

C our post install script is for.

35

Again, pretty straight forward. Most of this is just extra stuff to disable any auto
updates, the most important line is here _C_ just loading our launch daemon.

Now our package is done..

36

Create our enrollment policy. Trigger is enrollment complete and we’re just installing
our custom PKG. _C_

37

So once DEPNotify is installed the only thing left to do is _C_

Have our launch daemon run our provisioning script.

Let’s see that in action.

38

Okay, after we do our first boot we go through the setup assistant.

39

40

Now, we know this screen, it means we’ve got a DEP machine that’s tied to a server
and we’re ready to roll! Clicking continue…

41

Not sure if anyone else has the same issue we do but sometimes this screen can take
up to 3 minutes… it’s weird…but it eventually completes

When it’s done doing this we’re greeted with our login window.

42

Notice our macadmin account is there and it didn’t ask for any authentication.

So we’ll log in.

43

And this is what we’re greeted to after login (or after the enrollment policy runs
AFTER logging in), our DEPNotify window. Let’s see it with our code side-by side.

44

Here’s our code. Now, DEP notify was only launched because _C_

we waited for the dock and finder to be loaded and made sure we’re not in the
mbsetupuser account… we also are checking for this setup done file, more on that
later.

C The window looks the way it does because we sent these commands to the
depnotify log file. Then we launched it AFTER sending that to the log.

Now the interesting thig is that this is now just waiting for the user to hit the “Assign”
button. I set it up this way so our tech’s don’t have to wait around until it’s done
installing things, nothing will happen until they start. So that’s down here _C_.

It’s just waiting for the “DNPLIST” which is a file that gets dropped after input is
complete. Which is next up…

45

When the tech clicks “Assign” the registration window drops down.

That is populated by this section of code. Notice that the code was run before
DEPNotify was open because it’s actually just setting some prefs up. We only need
two text fields, but you can also add a dropdown menu or two and a “sensitive data”
checkbox. New features are being added every week it seems.

46

So after the user input is done we can begin the tasks.

C First we’re grabbing the username from the plist that was created after
registration and holding it for creating the local account later. Then we’re passing
more commands into the DEPNotify log file, so now our window has changed. And
then we run our first run policy.

C After the policy is run we are creating the local account based on the assigned
user and setting the password to the username (temporarily).

C Then we’re going to assign and rename the device with another policy. This
policy runs a script…

47

It just reads _C_ the plist file that was dropped at registration and sets variables for
user and asset tag.

C sets up an xml file and passes it to the jamf API

C then it renames the machine using the assigned username with a prefix for MBA
or MBP.

C Finally, we update our extension attribute receipts on the machine and remove
the temp XML file.

48

Back in this script we now run a recon to get all of that new info into our server

49

And next we run software updates..we’re also changing the text in our DEPNotify
window just to tell the tech that it’s almost done.

C After software updates install we send the command to DEPNotify to restart the
machine right away, you can ask the user to hit "OK" to reboot if you'd like, there is
also a quit or logout action.

C Right as that happens we clean up the files that we installed (DEPNotify, our logo,
and our logs).

C Finally, we create the setup done bom file to tell us that this ran and if the
launchdaemon doesn’t unload next it won’t accidentally run provisioning again. And
of course we remove our launch daemon.

Note that we’re not unloading it, we had issues with trying to unload it so I decided
to just to remove it since the machine was going to reboot anyway.

50

Reboot complete and

C we now have our new local user and everything installed.

51

So there we go, our new process. Two steps..kind of.

So.

52

Is this imaging?

53

No, not really.

C And that’s okay because it actually works well for us. At least in this case.

54

Having success with this we have a lot more things we want to do.

C We’re going to create a more automated process.
C Neil Martin has one already for doing this that skips user into if the machine is
found in the server and changes DEP info based on machine type

C Hope that apple gives us true zero-touch.
_C_We’re getting close with the new erase install flag but that is limited to APFS
(which apparently will not work on all HDs in 10.14?) and we still have to go through
setup assistant.

C And finally see what jamf has to offer in terms of DEP setup. They’re working on
something now, I’ve been trying to get in on every webex they offer me to give input
and see what they’re doing. So far, I like what I see but I think we’re still a bit off from
a release.

55

Thanks much!

56

Some resources for this presentation including my scripts and my blog post on this
entire process.

I’m also including a link to Neil Martin’s process because I mentioned it and it’s
probably very useful for others.

57

